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Abstract

Model updating methods based on structural vibration data have being rapidly developed and applied to
detect structural damage in civil engineering. But uncertainties existing in the structural model and
measured vibration data might lead to unreliable damage detection. In this paper a statistical damage
identification algorithm based on frequency changes is developed to account for the effects of random noise
in both the vibration data and finite element model. The structural stiffness parameters in the intact state
and damaged state are, respectively, derived with a two-stage model updating process. The statistics of the
parameters are estimated by the perturbation method and verified by Monte Carlo technique. The
probability of damage existence is then estimated based on the probability density functions of the
parameters in the two states. A higher probability statistically implies a more likelihood of damage
occurrence. The presented technique is applied to detect damages in a numerical cantilever beam and a
laboratory tested steel cantilever plate. The effects of using different number of modal frequencies, noise
level and damage level on damage identification results are also discussed.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many structures in their service life are inevitably subjected to deterioration and damage due to
many factors such as environmental erosion, operating loads, fatigue, accidental bumping, etc.
Because the structural failure could be catastrophic not only in terms of the loss in economy and
life, but also in terms of the subsequent social and psychological impacts, structural damage
detection is becoming a worldwide research subject. Current non-destructive test methods are
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either visual or local experimental methods such as ultrasonic methods, electromagnetic methods,
radiological methods, optical methods and thermal field methods. These methods are time
consuming and costly, moreover, the location of the damage must be known a priori and the
inspection area must be accessible.

A vibration-based method that examines the changes of vibration characteristics (such as
natural frequencies, mode shapes and damping) of structures has been developed to detect the
structural damage. This method is based on the fact that local damages usually cause decrease in
the structural stiffness, which produces changes in the global vibration characteristics of the
structure. When the changes of the vibration data are examined, the damage locations and
magnitudes can be identified. The advantage of this method is that it is not necessary to know the
damage locations beforehand. With the development of measurement equipment and signal
processing techniques, the vibration properties of a structure can be measured more accurately
and conveniently so that this method is rapidly developed and applied in civil, mechanical and
aerospace engineering in the last decades.

The vibration data used to detect the structural damage include frequency response functions,
natural frequencies, mode shapes, mode shape curvatures, modal flexibility, modal strain energy,
etc. An extensive review can be found in Ref. [1]. Among these data types, natural frequency is
used widely because it can be measured most conveniently and accurately. Moreover, natural
frequencies are the global properties of the structure and thus they can be measured at a few
locations or even at one point. Initial studies to detect damage with frequency changes mainly
focus on forward method in which the measured frequencies are compared directly with the
predicted data [2-4]. This forward technique can only give damage location and only be practical
for a single damage scenario. Recently an inverse approach, namely model updating method is
applied to identify damage, in which the parameters in a finite element (FE) model are adjusted so
that the model predictions match the measured data in an optimal way [5-7]. It includes two-stage
model updating processes: model improvement (or model tuning) and damage identification. In
the first-stage model updating, using the measured vibration data at the undamaged state of a
structure, the initial analytical FE model, namely IM, is tuned to obtain an updated model in the
undamaged state denoted as UM. Then the UM is updated to obtain a model in the damaged
state (DM) with the measured vibration data at the damaged state of the structure. The damage is
identified by comparing the differences between UM and DM (usually the reduction of the
stiffness parameters).

The efficiency of this damage identification algorithm relies on accuracy of the analytical FE
model and the measured frequencies. Most studies assume that the analytical FE model is precise
enough to represent the vibration properties of the structure and the measurements are accurate
as well. In practice, however, there are many uncertainties during model updating procedure such
as the FE modelling error and measurement noise [§]. Uncertainties in the FE model exist due to
inaccurate physical parameters, non-ideal boundary conditions and structural non-linear
properties. These are more true in civil engineering especially for concrete structures. On the
other hand, measurement noise is inevitable. If the uncertainty level is larger than or close to the
frequency changes due to damages, the true information is submerged in the noise thus the actual
damaged members cannot be identified accurately and/or the healthy members may be wrongly
detected as damaged. Therefore, it is very important to analyze the influences from both the FE
modelling error and measurement noise on the damage identification results.
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Some studies have considered the uncertainty effect on the model updating. Collins et al. [9] first
derived a statistical identification procedure by treating the initial structural parameters as
normally distributed random variables with zero means and specified covariance. Liu [10]
considered the measurement noise effect on the damage detection with the perturbation method
and Monte Carlo simulation algorithm. Papadopoulos and Garcia [11] presented a probabilistic
damage detection methodology by considering the measurement noises. However, these studies
only considered either FE modelling error or the measured data noise, and performed only the
second-stage model updating.

To derive a robust statistical damage identification method with frequency changes that
includes the uncertainties in both FE model and measured data simultaneously, a two-stage model
updating algorithm with statistical approach is developed in this paper (Fig. 1). The first-stage
updating is to derive the statistical FE model of the structure at the undamaged state, UM, by
considering the statistical uncertainties of the initial analytical FE model (IM) and the noises in
the measured frequencies of the undamaged structure as normally distributed random variables.
The mean values and standard deviations of the stiffness parameters of UM are derived by using
perturbation method. The second stage is to update the UM to derive a statistical FE model in the
damaged state (DM) based on the measured frequencies in the damaged structure. The random
noise in the measured frequencies corresponding to the damaged structure is also assumed as
normally distributed. The statistics of the stiffness parameters of DM are similarly derived. The
variations of the stiffness parameters in UM and DM are proved also having normal distributions
by Monte Carlo simulation and goodness-of-fit test. Probability of damage existence (PDE) can
be estimated by comparing the probability distributions of stiffness parameters of UM and DM.
A higher PDE of a structural member implies a higher likelihood of the existence of damage in the
member.

If the measurements of the undamaged structure are not available, which is true for most
practical cases unless for newly constructed structures or laboratory test, the usual assumption
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Fig. 1. Procedure of damage identification.
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that the analytical model is precise has to be adopted. In such cases, the numerical frequencies are
used as the baseline for model updating as used by many researchers [12]. But in the present study,
the uncertainties in the FE model are included to directly obtain the statistical variations of
stiffness parameters in UM without model updating. This, however, is a special case of the two-
stage model updating developed in this paper and only the second-stage statistical model updating
is applied.

A steel cantilever beam and a laboratory tested steel cantilever plate by other researchers [13]
are used to illustrate the developed procedure. Some parametric calculations are performed to
investigate the effects of using different number of modal frequencies, noise level as well as
damage severity on the identification results.

It should be noted that in the present study only random noises, i.e., random errors in material
properties and measured vibration signals are considered. Systematic errors such as those induced
in FE model due to discretization and configuration error, and those in the measured signals
owing to the environmental impacts and/or measurement set-up and equipment error, are not
considered. Theoretically, it is possible to include the systematic errors in the following
derivations by using non-zero mean values for the random variables. However, it will be difficult
to determine the systematic error or non-zero mean values in practice. For example, the
systematic changes owing to environmental impact such as temperature variation can only be
determined by long-term monitoring of the structures. The systematic errors in the measured data
can be avoided by careful calibrations of the equipment and measurement setting up. On the other
hand, the systematic errors in the FE model induced by FE discretization, cannot be corrected by
model updating. Usually, model updating is used to update material parameters and boundary
conditions, not the FE mash. The normal way to reduce the FE discretization and configuration
errors is to carry out convergence and patch tests of the FE mesh. Nevertheless, such systematic
errors will certainly affect damage identification results. More studies by combining the FE
modelling, model updating, long-term monitoring, measurement and signal processing
techniques, are necessary to include both the systematic and random errors in the structural
damage identification analysis.

2. Model updating with frequency changes

The free vibration of an undamped structure with N degrees of freedom is described by the
eigenvalue problem as

(_)VI[M]—F[K]){Q’)I} = {O}a i= 1,2,,N, (1)

where [M] is the N x N symmetric mass matrix, [K] is the N x N symmetric stiffness matrix, 4;
and {¢,} are the ith eigenvalue and mass-normalized mode shape, respectively. When there are
changes in the structural parameters, the vibration properties will change accordingly and
eigenvalue problem can be similarly written as
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where the tilde indicates the structural parameters and vibration properties in the changed state.
From the above two equations, the changed structural parameters can be solved with the initial
structural parameters and the measured eigenvalues in the changed state.

Assuming that the mass remains unchanged, the quantities in Eqgs. (1) and (2) have

[K] = [K] + [AK], (3)
[M] = [M], 4)
L= di+ A, (5)
{di} = {9} + {Ad,}. (6)

Substituting Egs. (3)—(6) into Eq. (2) and left-multiplying {d)i}T, the following can be derived by
neglecting the high order terms:

(D TAKI G = Ay = 7 — (7)

where { }T represents the transposed vector. As usual, [K] and [M] are obtained by assembling the
contribution of all m elements in the discrete FE model [6]. In particular,

= K], =) alK, (8)
i=1 i=1

[M] = Z[ML Zﬁ [M°], ©)
i1

where [K]; and [M]; are, respectively, the ith elemental stiffness matrix and elemental mass matrix;
o; and f; are, respectively, “‘elemental stiffness parameter” (ESP) and “‘elemental mass parameter”
(EMP); and [K*]; and [M€); are, respectively, the elemental stiffness matrix and elemental mass
matrix divided by o; and f,. For example, for the Euler—Bernoulli beam model without
considering the axial deformation, ESP is the elemental bending stifiness (E/) and EMP is the
elemental mass per unit length (p). Similarly the changed stiffness matrix is given by

[K] =K, = alK, (10)
i=1 i=1
and
[AK] = [K] - [K] = Z( K])—Z(a, oK), ZA%[K‘],, (11)

where &; is the ESP in the changed state and Ag; is the ESP reduction. Substituting Eq. (11) into
Eq. (7), the equations can be written in the form of

[ST{Aa} = {AZ}, (12)

where {Ao} and (AA) are elemental stiffness reduction vector and eigenvalue change vector,
respectively, and [S] is the sensitivity matrix whose elements are

Sy = (i '[K Yo} (13)
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fori=1,2,...,nand j=1,2,...,m, where n is the number of available frequencies in testing.
When the initial FE model is known and the frequencies in the changed state are measured
accurately, Eq. (12) can be uniquely solved and {A«} is derived if the matrix [S] is square. But in
practice, the number of measured frequencies # is usually less than the unknown variables m.
Therefore, this is an underdetermined problem in mathematics and has infinite solutions.
Normally, the minimum norm solution is derived with the assumption that the norm of {Aa} is
minimum, i.e., stiffness changes are minimized [5]. Therefore,

{Aa} = [ST"{AL}, (14)

where []" is Moore-Penrose generalized inverse which can be solved by singular value
decomposition. Thereafter the ESP in the updated model, &@;, is simply obtained by &; = a; + Aa;.
A non-dimensional parameter, ‘‘stiffness reduction factor”” (SRF) is defined as the ratio of Aa; to
o;. It varies between —1 and 0. The negative values of SRF locate the damaged elements, and the
values represent the damage severity.

3. Error analysis

The above algorithm is developed based on the assumption that both the FE model and the
measured modal data are accurate. But in real applications, errors always exist which may lead to
incorrect damage identification results. Therefore, it is very important to investigate the influence
of the FE modelling error and measurement noise on the identification results. Modelling errors
generally include discretization error, configuration error and mechanical parameter error. As
discussed above, in this study, only the random errors associated with the structural material
properties, in particular, with EI, are considered. Investigation from literatures finds that these
random errors usually have normal distribution [14]. The errors that occur in the measured modal
data may be divided into two classes: biased (systematic) error and random error. Biased error is
caused by malfunction of equipment or/and environment sources. It might not have zero mean
and have different types of distributions. Random error, on the other hand, has zero mean and is
usually modelled as normally distributed. Detailed discussion can be seen in Bendat and Piersol
[15]. In this paper, as discussed above, again only random error in the measured modal data are
considered. Random noises in the measured vibration data are usually assumed having normal
distributions in the analysis [9,11,16].

In the present study, the uncertainties of the FE model and the measurement data are also
assumed as normally distributed random variables with zero means and given covariance. The
quantities are equal to the true values plus the random noises as

b= R+ 20X = 2+ X)), (15)
0, 0y _ 0
By =B + B Xy = Bi(1 + Xp) (17

for i=1,2,...,n and j = 1,2, ...,m, where superscript “0” represents the corresponding true
value, X;;, X,;, and Xp; are the relative random noises in the measured eigenvalues, ESP and EMP,
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respectively. For simplicity, Xj;, X,;, Xp are written together as a vector X;, i=1,2,
...nn+1,...,n+ 2m. According to the above assumptions, E(X;) = 0.

With perturbation technique [10], Eq. (12) is expanded as a second order Taylor series in terms
of Xj,

n-+2m n+2m n+2m 2
asy. 1 LS]
_ 0 A E E Y
SI= B =1 aXf)(l+2 =1 j=I 8XianXlX]’ (18)
n+2m n+2m n+2m ~2
O{Au} 1 0“{Aa}
{Aa} = {Aa}’ + 3 TXlXﬂLi El 2 WXzXJa (19)
= = Jj=
n+2m n+2m n+2m A2
ALY 1 FP{AN)
_ 0
(AL = (AL + ) o, Xi+3 §. 3 aXl_anX,-Ag. (20)
= = Jj=

Substituting the above equations into Eq. (12) and comparing the terms of 1, X;, and X;Xj, then
{Ax}", 0{Aa} /0X;, 0*{Aa}/0X:0X; (i,j = 1,2,...,n+ 2m) can be solved one by one as

{Aa}® = ([S])"{AZ}°, 21)
Aoy o (O1AZ} OS] 0
oy = s (—M ox, A} ) (22)
Aoy o, (OH{ALY S] o ~O[S]10{Au}
San s (am&—am)(j (et - AT ) (23)
From Eq. (19) the mean values of {Aa} are, noting that E(X;) =0,
E({Aa}) = E({A}") + = izm & {Aa} Cov(X;, X)) (24)
2 & ox? v
and the covariance matrix of {Aa} is
 [ofAw) o{Aa}]"
[Cov(Aa, Ax)],m = [ 5(X ] m><(n+2m)[COV(X s X)) rt2m) x (n-+2m) [6{—)(}} . (25)

The subscripts in Eq. (25) are the dimensions of matrices. It is worth noting that the noise vector
X includes three parts, namely 4;, o; and ff; whose covariance matrix will be given later.

From the above equations, in order to calculate the mean values and covariance matrix of
{Aa}, 0{AL}/0X;, O[S]/0X:, 0*{AA}/0X}? and &*[S]/0X? must be derived and whose elements are
given as

OAl; 8k 0l

Xy 0Xp oX¢ 20
0Sy 0P IKVASY) 1 per O
= AU s o (27)
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PN Pl 0PN

_ 04 28
oX? oX} oXx} 28)

&Sy Trpey C40 | PP e i)
= 2{¢,} [K°]; d 2 C K] —* 29
aX]z {d)l} [ ]] aX]g + an L ]] 8Xk ( )

fori=1,2,...,n j=12,...,mand k=1,2,...,n+2m. It is noted that [K<)s Zi and ¢; are
independent of measurement noise, thus their derivatives to X, k = 1,2, ..., n are zero. Similarly,
the derivatives of 4; to Xg, k =n+ 1, n+ 2, ...,n+ 2m, are zero. From Eq. (15), it is easy to find
that
i
0Xy,

&Phi
ox?

=20 and 0, k=12, ..,n. (30)
The first and second partial derivative of the analytical eigenvalues and eigenvectors with respect
to the ESP and EMP can be computed according to Fox and Kapoor [17]. Thereby, Egs. (26)—(29)
are obtained.

Substituting Egs. (26)—(29) into Egs. (22) and (23), the mean values and covariance matrix of
{Aa} are estimated according to Eqs. (24) and (25). Therefore, the statistics of ESP of the updated
model can be obtained as

E(8) = E(o;) + E(Aw) = of + E(Ao;), (31)
Cov(d;, d;) = Cov(o; + A, o + Aaj)
= Cov(a;, ;) + Cov(ay, Aoj) + Cov(Aay, o) + Cov(Aa;, Aa), (32)
Cov(Aa;, A;) is given in Eq. (25), and from Egs. (16) and (19), it has
Cov(a, o) = oc?ocj(-) Cov(Xui, Xo), (33)

Cov(a;, Aoy) = E| (a7 — o )(Aoy; — Aot)) |

n+2m
OAu;
(oc?)@»( —%)]
— OX
n+2m

OAoi;
0 i
= — Y.E Xy X

=F

n+2m Ao
]

F)
=o — L Cov(Xy, X 34
o kz:; X, ov(Xyi, Xi) (34)

and similarly

n+2m aAOC,'
0Xk

Cov(Aw;, o) = Cov(a, Ax;) = oc_;) Cov(Xy;, Xi). (35)

k=1
Then from Eq. (32), the standard deviation of &;, ¢(&;), can be derived as the square root of the
corresponding diagonal element of the covariance matrix. The statistics of {&} derived above with
perturbation method will be verified by Monte Carlo simulation.
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The closed-form solution of the statistical distribution of {&} is very difficult to derive. This is
because {Aa} is non-linearly related to the ESP, EMP and eigenvalues as defined in Eq. (14). Since
Monte Carlo simulations give statistical samples of {&}, those samples can be used to derive their
distributions. As will be shown later in a numerical example, the statistical distributions of ESPs
in the updated model also have normal type distribution. The above statistical model updating
procedure can be applied to the two-stage model updating presented in this paper to derive the
statistical distributions of the stiffness parameters of UM and DM, respectively.

4. Probability of damage existence (PDE)

The PDE can be estimated from the statistical distributions of the stiffness parameters of UM
and DM. The basic idea is to compute the probability of an ESP at a confidence level. For
example, for an element i, its stiffness parameter in the intact state o; is assumed as a normally
distributed variable with a mean E(«;) and a standard deviation a(o;), then its probability density
function (PDF) is as illustrated in Fig. 2. The interval of the healthy stiffness parameter, Q(o;, u) is
defined so that the probability of o; contained within the interval is p, i.e.,

prob(x, € (e, 1) = prob(Lo <x, < o0) = p, (36)

where Lg is the lower bound of the interval Q(«;, 1), which can be easily obtained for normal
distribution, €(a;, 1) depends on the required confidence level. In statistical analysis of this study,
we set u to 95%, thus Lo = E(x;)—1.6450(a;), indicating there is a probability of 95% that the
healthy stiffness parameter falls in the range of [E(o;)—1.6450(x;), 0).

Similarly the stiffness parameter damaged state &; is also assumed as a normally distributed
variable with a mean E(&;) and a standard deviation o(&;) the corresponding PDF of 4; is also
plotted in Fig. 2. The PDE is defined as that of &; not within the 95% confidence healthy interval
Q(a;,0.95). Thus the PDE of an element i is

p'; =1 — prob(xz e Q(x;,0.95)) = 1 — prob(Lo<x;< )
= prob(— oo <xz< Lg). (37)
Fig. 2 shows the healthy area and PDE area as denoted by P’

PDF

Lo X

Fig. 2. Probability density functions of &, o;, and PDE, p/,.
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PDE is a value between 0 and 1. It is apparent that if the PDE of an element is close to 1 then
most likely the element is damaged; and on the other hand, if the PDE is close to 0, the damage of
the element is very unlikely. However, it is difficult to give a threshold of PDE for damage
identification, because it depends on the confidence level of FE modelling and the measured data.

The steps of probabilistic damage identification are given in the following:

1. establish the random FE model of initial structure (IM) by including the statistical variations of
ESP and EMP;

2. perform statistical model updating to determine the distributions of ESP in the undamaged
structure (UM), if measurement of eigenvalues is available; otherwise, skip this step and
distributions of ESP in UM is directly determined in Step 1;

3. add random noises into the measured eigenvalues of the damaged structure, perform second-
stage statistical model updating to determine the statistical properties of DM and then derive
the distributions of ESP in DM;

4. Estimate the PDE for each element of the structure based on statistical ESP derived for UM
and DM.

5. Numerical example

To illustrate the proposed statistical damage identification method, a steel cantilever beam is
first utilized to numerically demonstrate the procedure.

Fig. 3 is the FE model of the intact beam with 9 Euler—Bemoulli elements (i.e., m = 9). The
actual Young’s modulus in the intact state is 2.0 x 10'' N/m?, the size of the cross-section is
50.75 x 6.0 mm?® and the mass density is 7.67 x 10> kg/m>. Assuming element 5 is damaged with
the bending stiffness degraded by 20%. In practice, the actual structural stiffness parameters have
more uncertainties than the mass parameters, thus in the initial analytical model the ESPs are
assumed as 1.1 times the actual ones and the EMPs are accurate. Thus, the ESPs of the initial
analytical model (IM), the actual undamaged model (UM) and the damage model (DM) are,
oMy = 182.7 x 1.1 =20097Nm*, oM =oPM  =1827Nm> and ofM =182.7x08 =
146.16 N m?, respectively. Assuming the first 6 frequencies are measured (i.e., n = 6), which for
the three models are derived with eigenvalue analysis and listed in Table 1.

5.1. Statistical model updating in the first stage

As stated before, the initial analytical FE model (IM) and the measured frequencies are
inevitably smeared with errors. To investigate their effects, in the first updating stage, normally

1 2 3 4 5 6 7 8 9 10

QOOOOOOBO

9x100=900mm

LLLL

Fig. 3. FE model of the cantilever beam.
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distributed random noises with zero means are added to the IM and the measured frequencies in
the undamaged state to derive a tuned FE model for UM. Assuming the random noises are
independent of each other, the covariance matrix of noises is a 24 x 24 diagonal matrix (6 for
measured frequencies, 9 for ESP and 9 for EMP). Without loss of generality, the noise level is set
to be 1%, which means the standard deviation of the random noise is equal to 1% of the
corresponding true quantity (mean value). Therefore,

0 for i#j,
Cov(X;, X)) = (38)

(1%)> for i=

fori,j=1,2,...,24.

Using the perturbation method, the mean values and standard deviations of ESP in the
undamaged state (UM) are computed and illustrated in Fig. 4. To verify the results, Monte Carlo
technique is also applied and the results after 10,000 simulations are also shown in the figure. It
shows that the two algorithms yield very similar results, indicating the perturbation method based
on the second order Taylor series expansion is reliable. For convenience, the coefficients of
variation, i.e., the ratios of standard deviations to the corresponding mean values are presented in
the figure rather than the standard deviations themselves.

The figure also illustrates that the coefficients of variation of ESP are about 3—15% when the
noise level is 1%, this implies that the uncertainties are enlarged after the model updating. To
investigate which type of noise has more significant influence on the updated ESP, the sensitivities
of the updated ESP with respect to the measurement noise, ESP error and EMP error are

Table 1
Natural frequencies of the IM, UM and DM (Hz)
Model Mode

1 2 3 4 5 6
IM 6.41 40.14 112.44 220.56 365.44 548.18
UM 6.11 38.27 107.20 210.30 348.44 522.67
DM 6.07 37.27 107.02 205.59 346.67 513.30

200 20%

£ AR OSimulation ]
L ! 8
E 150 # Perturbation 15% 5
g >
3 100 | 10% g2
(.

> 2
£ )
§ 50| 5% 8
] Inlindnn :

0 T L B e e e LA e a 0%

123456789 123456789
Element

Fig. 4. Mean values and coefficients of variation of ESP in the undamaged state.
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investigated. First only the measured eigenvalues are smeared with 1% random noise and the
analytical FE model is accurate without statistical variations. Then the above model updating
procedure is applied to derive the ESP in the undamaged state. The root mean square of the
coefficients of variation of ESP is derived. This procedure is repeated separately by considering
ESP error only and EMP error only with 1% variation. The root mean square values of
coefficients of variation for the three types of uncertainties are, respectively, 7.73%, 0.63% and
0.90%. They indicate that the updated ESP is much more sensitive to the measurement noise than
the FE modelling errors.

5.2. Distribution test

As discussed above, the closed-form solution of probabilistic distribution of the updated ESP is
difficult to derive. But the Monte Carlo simulation results indicate that it has normal type
characteristics. This observation needs to be verified by goodness-of-fit test technique. Commonly
used goodness-of-fit test methods, such as chi-squared goodness-of-fit test and Kolmogorov—
Smirnov (K-S) goodness-of-fit test [18,19], are applied in this paper to verify the distributions of
ESPs of the updated model.

The samples of updated ESPs can be obtained from the Monte Carlo simulation results. For
example, after 100 times simulation, there is a sample with a size of 100 for each updated ESP
whose mean and standard deviation can be estimated from the 100 sample points. Then the
sample of each element is tested at a confidence level of 95%. Fig. 5 shows the chi-squared
goodness-of-fit test and K-S goodness-of-fit test for element 2. Fig. 5(a) is the observed and
theoretical frequencies of the non-overlapping groups, and Fig. 5(b) gives the cumulative
distribution function (CDF) calculated from the sample points as compared with the theoretical
one. Based on the goodness-of-fit test approach, normal distribution hypothesis of the stiffness
parameters for all the elements is accepted with a confidence level of 95%.

5.3. Statistical model updating in the second stage

From the statistical model in the undamaged state UM, the damaged model DM is also derived
by statistical model updating with the measured frequencies in the damaged state. The measured
frequencies are also smeared with normally distributed random noises. Again both the
perturbation method and Monte Carlo technique (after 10,000 simulations) are used, the mean
values and coefficients of variation of ESPs of DM are computed. The results with two algorithms
are again very close.

Similarly, the probabilistic distributions of the ESPs in the updated damaged model DM are
assumed as Gaussian, and the hypothesis is tested by chi-squared goodness-of-fit test and K-S
goodness-of-fit test. The results, not shown here, also indicate that all the ESPs of DM are
normally distributed at a 95% confidence level.

5.4. Probability of damage existence (PDE)

After the distributions of the ESPs in the undamaged and damaged states are both estimated,
the PDE can be obtained for every element from Eq. (37) and listed in the third row of Table 2. It
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Fig. 5. Hypothesis test for element 2 in the undamaged state: (a) chi-square goodness-of-fit test and (b) K-S goodness-
of-fit test.

clearly indicates that element 5 is most likely damaged with very high probability. The PDE values
of other elements are less than 10%, and thus these elements can be considered as undamaged.

5.5. Mode effect

In the above calculation, it is assumed that the first 6 frequencies are measured. In a real
structure, the number of measurable frequencies is usually about 30. It is believed that the more
measured information, here modal frequencies, is available, the more accurate damage
identification results will be, despite of more noises will be introduced with the more measurement
data. To investigate this, the above analysis is performed again but by assuming that only first 3, 4
and 5 modal frequencies are available in each analysis. The PDEs are obtained and compared in
Table 2. It shows that with less number of modal frequencies, the damaged element 5 still can be
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Table 2
Probability of damage existence when different modes used, SRF(5)=—20%
Modes Element (%)

1 2 3 4 5 6 7 8 9
1-6 7.4 9.2 1.6 6.9 99.8 2.3 7.0 32 1.8
1-5 29.2 0.2 0.5 0.2 99.5 3.2 3.2 8.4 1.2
1-4 9.3 5.2 0.0 6.2 99.9 16.7 0.3 29.9 7.4
1-3 67.2 0.0 0.0 66.8 96.8 91.3 0.1 0.0 1.6

confidently identified, but more undamaged elements might be falsely detected as damaged. For
example, if only the first 3 frequencies are available, the undamaged elements 1, 4 and 6 are also
associated with high PDE values, implying false identification. These observations indicate that
the confidence of damage identification reduces when less modal frequencies are measured. In this
example, at least the first 4 modal frequencies are necessary in order to give a successful
identification analysis. But it is difficult to give a general criterion on how many modes are enough
for successful damage identification analysis as it depends on structural types, number of damages
and their locations. It deserves further study.

5.6. Parameter study

From the results, it can be seen that the true damaged element can be identified by the
developed method even the statistical FE modelling error and measurement noise are included in
the consideration. However, the accuracy and confidence of the identification results depend on
the relative levels of statistical uncertainties and damage severity. If the uncertainties in FE model
and measured modal data are significant than the effect of structural damage on its vibration
properties, it will be unlikely to have a reliable damage identification calculation. To investigate
the sensitivity of damage levels, numerical analyses are performed by assuming different structural
damage levels while the uncertainty level is kept unchanged with 1% standard deviation.

Assuming that element 5 is damaged with SRF equals to —5%, —10%, —15%, —20%, —25%,
—30%, and —40%, respectively, the PDEs of every element in different damage levels are
computed and listed in Table 3.

For all the cases considered, the PDE of element 5 is higher than those of other elements,
implying that the element has higher PDE. It is found that when the damage is insignificant, for
example in the case of SRF equals to —5%, the PDE of element 5 is not high, which means that
the damage cannot be detected confidently. This is because the frequency changes are not
apparent in the case and the noises of measurement and modelling errors may make the small
changes intangible. With the increase of the damage severity, the calculated PDE of element 5
increases sharply and monotonously but others do not. Therefore, the damage identifiability is
improved. The calculated PDEs of other elements change with respect to the damage level of
element 5. This is because of the non-linear effect caused by severe damage in one of the structural
elements, as will be further discussed later. Particularly, when the damage is severe
(SRF=-30%), the PDE of element 1 increases to about 18%, and it is about 37% when
SRF=—40%. This might lead to false identification.
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Table 3
Probability of damage existence in different damage levels
Damage level (%) Element (%)
1 2 3 4 5 6 7 8 9

=5 4.4 11.0 4.1 10.6 22.9 3.0 6.3 2.6 2.4
—-10 4.4 11.3 2.6 9.6 65.9 2.6 8.0 2.4 1.9
—15 4.7 9.5 2.3 8.4 93.7 2.5 7.4 1.6 1.4
-20 7.4 9.2 1.6 6.9 99.8 2.3 7.0 3.2 1.8
=25 8.5 7.6 0.9 6.3 100.0 33 6.5 3.8 1.8
=30 17.9 6.6 0.5 4.4 100.0 3.3 7.8 3.8 1.4
—40 37.1 3.4 0.2 2.0 100.0 2.0 5.5 7.4 0.4
Table 4
Probability of damage existence, SRF(5)=—40%
Element 1 2 3 4 5 6 7 8 9
Without iterations (%) 37.1 3.4 0.2 2.0 100.0 2.0 5.5 7.4 0.4
With 20 iterations (%) 15.1 4.2 3.0 4.6 100.0 4.7 8.1 8.4 5.6

To reduce the non-linear effect, Eq. (14) can be solved iteratively. To demonstrate that, the case
with SRF=—-40% is used as an example, 20 iterations are performed with the same statistical
damage identification procedure. Table 4 compares the results of PDEs with and without
iterations. It shows that the PDE of element 1 decreases to 15% after iterations are applied,
indicating a substantial improvement on the accuracy of damage identification results.

5.7. Multiple damages

To further illustrate the effectiveness of the proposed damage identification algorithm, the case
of multiple damages is studied. For the same cantilever beam, assume that elements 1 and 5 are
damaged with SRFs of —20%. Noise levels are the same as above. The PDEs of all the elements
are similarly computed and listed in Table 5. It can be seen that the PDEs of the two damaged
elements are the highest among all elements, again implying that the elements have higher
probabilities of damage occurrence. But element 2 also has a high PDE, due to the non-linear
effect associated with severe damage of structural elements, as discussed in the previous example.
Again, 20 iterations are performed and the results are also listed in Table 5. It shows that the PDE
of element 1 increases and PDE of element 2 decreases to 12% after iterations.

6. Experimental example

A steel cantilever plate tested by Friswell et al. [13] is applied here to further illustrate the
proposed algorithm. Fig. 6 shows the FE mesh and the saw cuts. The analytical natural
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frequencies are shown in Table 6 along with the measured frequencies before and after the
artificial damage.

Because the plate is symmetric, only the stiffness parameters of elements 1-8 are adjusted
during model updating [5]. With the present probabilistic damage identification procedure, PDEs
of elements 1-8 are estimated and listed in Table 7. It shows that the PDE of element 2 is much
higher than other elements, implying that the element has higher PDE. Therefore, the true damage
is detected correctly.

7. Conclusions

A statistical damage identification algorithm based on perturbation method has been presented
in this paper with two-stage model updating. The statistics of the stiffness parameters of the
undamaged and damaged structure are, respectively, derived by considering both the statistical
variations of the FE modelling errors and measurement noises in the first- and second-stage
updating. With the assumption that the statistical variations of the structural parameters and the
measured vibration data have normal distributions, the statistical distributions of the stiffness
parameters of the updated FE model for the undamaged and damaged structure are proved also
normal. Using the distributions of the undamaged and damaged stiffness parameters, the PDE for
each structural element is estimated.

Table 5

Probability of damage existence, SRF(1, 5)=—-20%

Element 1 2 3 4 5 6 7 8 9

Without iterations (%) 91.2 41.3 32 12.4 100.0 4.3 6.7 1.5 1.2

With 20 iterations (%) 99.2 11.8 49 8.9 99.5 3.6 8.4 8.6 5.4
16 17 18 19 20

305 mm

edge /

clamped

i

saw cuts

357 mm

Fig. 6. FE model of the cantilever plate (shaded number is element number).
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Table 6
Analytical and measured frequencies (Hz)
Mode Analytical Measurement
Undamaged Damaged

() 2 3) “

1 20.2 20.0 19.6

2 55.9 56.7 55.7

3 126.5 124.6 120.8

4 195.5 198.1 193.4

5 202.8 212.6 209.6

6 358.9 3539 343.0

7 361.2 380.8 377.8

8 415.1 427.5 415.5

9 509.5 530.1 521.1

10 595.1 639.9 622.4

11 636.2 690.7 666.2

12 704.0 N/A N/A

13 721.1 774.5 749.3
Table 7
Probability of damage existence of the plate
Element 1 2 3 4 5 6 7 8
PDE (%) 4.0 65.0 18.0 12.0 11.0 17.0 6.0 3.0

A cantilever beam with single damage and multiple damages and a laboratory tested steel
cantilever plate have been used to illustrate the procedure. Numerical results demonstrated that
the true damaged elements can be identified with higher probabilities of damage existence than the
undamaged ones.
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